

femtoG.com Franz Friebel, Dr. sc. ETH Zürich franz.friebel@femtoG.com / +41 76 520 2970

You can also ask ...

Jörg Wieder, Dr. sc. ETH Zürich Co-founder

Jonathan Symonds, Dr. Managing Director at Combustion

A femtoG

Sample preparation

• Dry dispersion

Powder \rightarrow Aerosolization \rightarrow Deagglomeration in Venturi nozzles

Wet dispersion

Aqueous suspension \rightarrow 5min sonification 60W \rightarrow Spray dispersion

Direct sampling from reactor

Coming soon: Liquid dispersion in organic solvents

Full schematic: Mass & Mobility Aerosol Spectrometer (M²AS)

Centrifugal Particle Mass Analyzer

Centrifugal and electrostatic forces \rightarrow selection of particles from 10⁻¹⁸ to 10⁻¹² gram

Mobility diameter

- Drag-force in air
- Scales with geometric dimensions
- No preferred orientation
 e.g. chains, needles, platelets
- Independent of density
- Independent of material
- → Conversion into aerodynamic diameter possible

Λ

raw data – Low Colour Furnace Black

• 12.3 min per scan; 740 data points aggregate diameter / nm (mobility) 100 1000 →21 mio particles counted 5678 5678 14000 OAN: 1.04 cm³/g d_{pp}: 51 nm 12000 m₅₀: 6.2 fg 0000 0.8 de d₅₀: 240 nm 8000 4.6.70 -6 d2.56 0.6.t ρ_{50} : 0.86 g/cm³ conc 6000 particle 4000 \rightarrow 1g of carbon black contains 2000 0.2 5.10¹³ particles 0.0 0.1 10 100 1000 aggregate mass / fg

2

Aggregation level vs PP-diameter

RC RCF-C; N_{aggr}:

aggregate mass / fg

 $[\land$

And other materials

Tire-grade vs rCB

aggregate mass / fg

 $[\land$

Raw data – rCB

Diameter estimates

	Drag-force equivalent	Settling velocity equivalent		
Air	d _{mob} Mobility diameter (Mass – mobilty aerosol spectrometer)	d _{aero} Aerodynamic diameter (calculated from mass + d _{mob})		
Water	d _{hydro} Hydrodynamic diameter (Dynamic Light scattering)	d _{stokes} Stokes diameter (Centrifugal photosedimentation)		
	diffusivity and mobility → geometry 	geometry and effective density		
observed diameter				

12

Diameter conversion → Centrifugal Photosedimentation

- 1. Fitting femtoG number-weighted mass-distribution
- 2. Extrapolation to mass-weighted distribution
- 3. Converting the d_{mob} into d_{hydro} and d_{stokes}

•
$$d_{hydro} \approx 1.1 \cdot d_{mob} (\pm 20\%)$$

• $d_{stokes} = \sqrt{\frac{\rho_{eff,hydro}}{\rho_{true}}} \cdot d_{hydro}$

- Correction factor for surfactant bias: 0.88
 - (reference N550, STSA: 39 m²/g)

•
$$\mathbf{d}_{\text{stokes}} = \sqrt{\frac{\rho_{\text{eff}}}{\rho_{\text{true}}}} \cdot \mathbf{d}_{\text{mob}} \cdot \mathbf{0.953} \cdot \mathbf{0.88}$$

• No correction for optical detection / Mie correction

Diameter conversion \rightarrow Laser diffraction

- Forward scattering depends on radius of gyration
- large scattering angles complex interaction with rCB-aggregates
 → no reference diameter

→ volume-weigthed size distribution → $d_{mob} \approx 0.85 \cdot 2r_{gyro}$

Comparison with other sizing methods

15

Mass vs. Diameter - A new approach for analysing particle size and structure

- Rapid analysis of vCB and rCB
 - 5-15 min time resolution
 - online product monitoring
- 1g of vCB contains 10¹³ to 10¹⁵ aggregates
- rCB consists of two distinct particle populations

get the presentation \rightarrow

Fast and comprehensive vCB/rCB characterization

Lab analysis

Process monitoring

femtoG.com Franz Friebel, Dr. sc. ETH Zürich franz.friebel@femtoG.com / +41 76 520 2970

Deagglomeration efficiency

• test for agglomerate stability 60 N660 - 1.7 N339 • work in progress N220 mean aggregate mass / fg - N121 50 2.0 • number of bonds \approx PP-number 10¹³aggr • change in mass 40 · 2.5 • pressure \rightarrow shear egates 30 3.3 20 5.0 œ 10 10 0 · 60' VO)

 $[\land$

diffusion limited cluster aggregation theoretical aggregate size

N330

Λ

 d_{PP} : 30 nm; SSA = 78 m²/g $d_{TEM,q0}$: 105 nm $d_{TEM,q3}$: 225 nm $d_{stokes,q3}$: 133 nm (Donnet et al. 1993)

N _{PP}		40	400	4000
mass / fg	$\propto N_{PP}^{-1}$	1.05	10.5	104.6
d _{mob} / nm (≈ 0.85·d _{gyro} ; ≈ 0.9·d _{hvdro})	∝ N _{PP} ^{0.5}	164	559	2029
d _{stokes} / nm	$\propto N_{PP}^{0.24}$	75	129	222
d _{TEM} / nm (2D cross-section)	$\propto N_{PP}^{0.33}$	103	221	476

Constant aggregate mass / m= 1.04 fg based on DLCA theory

N330 N1xx			
d _{PP} / nm	60	30	15
SSA / m²/g	54	108	216
N _{PP}	5.00	40	320
d _{mob} / nm (≈ 0.85·d _{gyro} ; ≈0.9·d _{hydro})	126	164	247
d _{stokes} / nm	92	75	61
d _{TEM} / nm (2D cross-section)	103	103	103

 $[\land$

grades:

N6xx